Research.
Analyze.
Advise.

Linley Fall Processor Conference 2021

Premier Sponsors

Platinum Sponsor

Gold Sponsors

Silver Sponsors

Industry Sponsors

TechInsights

Media Sponsor

A Flexible Yet Powerful Approach to Processing Evolving Edge Al Workloads

Linley Fall Processor Conference, October 20, 2021

Cheng C. Wang, Co-Founder and Senior VP

flex-logix.com

Flex Your Computing

Company Overview

Co-Founders: Serial Business Builder + Proven Technologist Who Deliver

Geoff Tate, CEO

- Experienced executive taking company public
- Rambus: 4 people to IPO to \$2B

Cheng Wang, Co-founder

- Industry expert with track record in tech innovation
- Winner: ISSCC Outstanding Paper Award, the premier chip design award. (Recent winners include IBM, Toshiba, Nvidia and Sandisk)

Flex Logix:

- Founded in 2014
- Profitable eFPGA Business in 2020
- Backed by top technology and innovation investors

- 600 years combined experience in software, systems and semiconductors
- 25 issued US patents; 1 issued European and 1 issued Chinese patent; dozens more in application in USA and major countries

Company Evolution: Embedded FPGA to Edge Al

We identified what the market needed and developed the best solution

flexlogix

EDGE DEVICES

Edge Server

EDGE DEVICES

EDGE DEVICES

flexlogix

AlexNet 2012

ImageNet Competition Winner

• Operator Types: 11x11, 5x5, 3x3n, MaxPool 3x3s2, FC

• Total Layers: 8

• Output is classification to 1000 classes

• Operations per Inference: 724 Million

ResNet 2015

Solves Vanishing Gradient Problem by using skip (residual) connections

- Operator Types: 7x7s2, 3x3, 1x1, Max Pooling and Average Pooling 3x3s2, Fully Connected
- Total Layers: 18,34, 50, 102, 158 (varies by accuracy/computation tradeoff)
- Output is classification to 1000 classes
- Operations per Inference: 1.8B to 11.3B (Depending on network depth)

Yolov3 2018

Integrated Detector and Backbone

• Operator Types: 3x3, 1x1, FC

• Total Layers: 75

• Output is object detection and location for trained categories

• Operations per Inference: 178B at 608x608

DETR 2020

Combines CNN Backbone with Transformer-based Detector

- Uses ResNet or similar CNN backbone for feature extraction
- Followed by Transformer-based Detector
- Output is object detection and location for trained categories
- Does not add large # of OP/inference (15B in transformer vs 178B in YOLOv3 backbone)
 BUT the computation is very different from CNNs

Flex Logix X1 Introduction

Dynamic TPU Array

- ASIC performance but dynamic to new models
- Accelerator/Co-processor for host processor
- Low power/High performance
- Designed for edge (B=1) applications

Dynamic TPU Memory Utilization

- Each tile offers 1024 MAC operations per cycle
- Each clock 64B of activations loaded from L2 SRAM and 64B of results transferred to L2 SRAM
- Weights are held in LO SRAM in the TPU, with next layer weights preloaded in L1 SRAM

Dynamic TPU Array Approach

TPU 0	TPU 8
TPU 1	TPU 9
TPU 2	TPU 10
TPU 3	TPU 11
TPU 4	TPU 12
TPU 5	TPU 13
TPU 6	TPU 14
TPU 7	TPU 15

64 Int8 MACs per TPU, 4 Tiles in X1

Dynamic TPU Array Approach

Reconfiguration done through Softlogic in microseconds

Dynamic TPU Array Approach

TPU 0	TPU 8
TPU 1	TPU 9
TPU 2	TPU 10
TPU 3	TPU 11
TPU 4	TPU 12
TPU 5	TPU 13
TPU 6	TPU 14
TPU 7	TPU 15

64 Int8 MACs per TPU

16 TPUs per tile, 4 tiles in X1

TPU's configured for 1x1 operator

1D TPU chaining can be reconfigured to support different input, compute, and output dimensions

Example convolutions with 16 1D-TPUs in 1 tile:

- 16 parallel 1x1 convolution of 64x64
- 8 parallel 1x1 convolution of 128x128
- 4 parallel 1x1 convolution of 256x256
- 4 parallel 1x1 convolution of 512x128 or 128x512
- 4 parallel 1x1 convolution of 1024x64 or 64x1024

Further scalable across 4 tiles in the X1 chip

64x64 1D TPU

Dynamically Reconfigured to Support different operators

flexlogix

Transformer vs. Traditional CNN

- Traditional CNNs uses simpler "head" (e.g. NMS via Softmax) after the CNN "backbone"
 - More advanced models like YOLO or SSD are more sophisticated, but still feasible on host CPU
- Transformer's computational complexity far exceeds what host processor can deliver

First the CNN output (X) are multiplied by 3 sets of matrices (W^Q, W^K, W^V)

Or in reality, there's multiple "attention heads" so there's multiple sets of (W_0^Q, W_0^K, W_0^V) to (W_N^Q, W_N^K, W_N^V)

Transformer vs. Traditional CNN (2)

- Transformer's complexity of HW accelerator mostly occur in the second step
- Intermediate results Q, K, and V are all activations, but they are multiplied with each other

- X1's reconfigurability is ideal for transformers:
 - Dynamically load activation data into weight memory
 - Broadcast of activation into multiple 1D TPU for parallel compute
 - EFLX Logic useful for Softmax and Layer-norm functions, which run poorly on most accelerators but efficiently on X1
- Efficient transformer implementation allows for even more complex transformers to trade off for simpler CNN backbone

flexlogix

The InferX X1 value proposition

- X1 provides **ASIC performance**/efficiency with flexibility of software
- InferX SDK directly converts TensorFlow graph model to dynamic InferX hardware instance
- Much more flexible & future proof vs ASIC solutions
- Much higher efficiency (Inf/W & Inf/\$)
 vs CPU and GPU based solution
 - Thus enabling compact form factors such as M.2 2280 B+M

2019: Xin Feng, Computer vision algorithms and hardware implementations: A survey

Thank You

flex-logix.com

Flex Your Computing