

Copywrite Flex Logix Technologies, 2022

Software Controlled

Modular FPGA White Paper

By: Geoff Tate, CEO Flex Logix Technologies, Inc.

Background:

Flex Logix has developed embedded FPGA IP (EFLX® embedded FPGA or eFPGA) that has

been licensed for use in many commercial, aerospace and defense programs. It has also

developed an edge inferencing accelerator, InferX® to efficiently process AI edge inferencing

workloads requiring high throughput for the least power and area. This paper describes

managing and dynamically programming eFPGA designs through software by a host processor

combining patented, silicon proven techniques developed for Flex Logix eFPGA and InferX.

Integrating FPGA can allow for greater software control of FPGA

FPGAs have significant advantages to accelerate workloads, but they are not easy to program

and there is a much smaller pool of qualified FPGA programmers than software programmers.

Why is FPGA so hard to program?

- Verilog code, used to program FPGAs, is a low-level language more like assembler than

C++.

- Parallel programming is very hard for traditional software programmers to comprehend

and learn.

- An FPGA is programmed as one giant “blob” of code. On the other hand, a processor has

subroutines, main programs, linkers and loaders, paging, etc. that a programmer takes for

granted. None of these capabilities are available for standard FPGAs.

- FPGAs are programmed in seconds, which is an eternity in hardware timeframes and

usually the whole FPGA must be reprogrammed. There is some partial programming, but

it’s slow and all operations stop while it happens. Whereas with processor code, pages

can be swapped in and out of cache while the main thread runs.

eFPGA provides an opportunity to re-think the programming strategy to take advantage of

hardware acceleration, leverage scarce Verilog coders and enable C++ coders to take software

control over embedded FPGA.

Software Controlled Reprogrammable eFPGA Basic Concept:

Step 1: Containerize/modularize code into “subroutines”

Segment an eFPGA fabric into modules or containers of smaller size and provide each of them

with direct access to DRAM memory and the processor.

https://flex-logix.com/management-board/
https://flex-logix.com/
https://flex-logix.com/
https://flex-logix.com/efpga/what-are-eflx-efpga-benefits-and-what-differentiates-us.html
https://flex-logix.com/efpga/what-is-efpga.html
https://flex-logix.com/inference/
https://flex-logix.com/inference/inferx-products.html
https://flex-logix.com/efpga/why-are-we-the-number-one-efpga-vendor.html
https://flex-logix.com/
https://flex-logix.com/efpga/
https://flex-logix.com/inference/inferx-products.html
https://flex-logix.com/efpga/

Copywrite Flex Logix Technologies, 2022

Flex Logix eFPGA IP was designed modularly using tiles

that can be “snapped” together with Block RAM (BRAM)

between the rows as needed to build up an eFPGA fabric of any size.

It is easy to add a system interconnect/NOC/AXI bus and provide every FPGA module/container

access to memory/processor.

Now use the scarce Verilog coders to write compute intensive “subroutines” (aka FPGA code)

that would be programmed into a container; provide it with input data or pointers to data in

system memory; have the eFPGA execute; then deliver the results as output data or as a pointer

to data in system memory.

Store the “subroutines” in on or off -chip memory,” and have the C++ coders write code on the

processor that calls the subroutines when needed using a function call or pragma in their code,

just like they do today for hard-wired co-processors or custom instructions.

Step 2: Allow containers/modules to be variable in size

Segment an eFPGA into modules or containers of smaller size and provide each of them with

direct access to DRAM memory and the processor.

Some algorithms are simpler and use fewer LUTs. Some use more LUTs.

As an example, using Flex Logix’s flexible interconnect fabric, it is possible to enable containers

to be any rectangular size up to the full size of the array. The array can be as little as 2 or 3 Flex

Logix eFPGA cores or larger as illustrated below.

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

System Interconnect/NoC

EFLX IP Interface

System Interconnect/NoC

EFLX IP Interface

Sys. Bus Master/Slave
Wrappers

Sys. Bus Master/Slave
Wrappers

Sys. Bus Master/Slave
Wrappers

Sys. Bus Master/Slave
Wrappers

System Interconnect/NoC

EFLX IP Interface

https://flex-logix.com/efpga/what-is-efpga.html
https://flex-logix.com/efpga/what-is-efpga.html

Copywrite Flex Logix Technologies, 2022

Step 3: Containers are pageable in microseconds (millionths of a second)

FPGAs have always been programmable in seconds from Flash memory – very slow and

generally done infrequently: at boot time or when an upgrade is required; like updating your

iPhone.

However, eFPGA can be reprogrammed in millionths of a second as demonstrated in Flex

Logix’s InferX X1 inference co-processor, taped out in TSMC 16FFC process. This was required

because the inference accelerator processes a neural network layer utilizing a layer specific

accelerator which executes billions of computations, then in <10 microseconds, reconfigures the

accelerator with the next layer specific accelerator and restarts compute.

This microsecond reconfiguration can be applied to containers/modules in the array above.

While a container is being reconfigured, the processor and the rest of the containers continue to

run at full speed.

This allows eFPGA to page in the subroutines/FPGA code like processors.

EFLX Core

BRA M

Sys. Bu s M a ster/S la ve
W rap p ers

EFLX Core

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

BRAM

Sys. Bu s M aste r/Slave
W rap p ers

EFLX Core

Sys. Bu s M a ster/Sla ve
W rap p ers

EFLX Core

BRA M

Sys. Bu s M aste r/S lave
W ra pp e rs

EFLX Core

Sys. Bu s M aster/Slave
W rap p ers

EFLX Core

BRA M

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

Sys. Bu s M aste r/S lave
W ra p pe rs

System Interconnect/NoC

EFLX IP Interface

System Interconnect/NoC

EFLX IP Interface

EFLX Core

BR A M

Sys. Bu s M a ster/Sla ve
W rap p ers

EFLX Core

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

BRAM

Sys. Bu s M aster/Slav e
W rap p ers

EFLX Core

Sys. Bus M a ster/S lave
W rap p e rs

EFLX Core

BRA M

Sys. Bu s M aste r/Slave
W rap p e rs

EFLX Core

Sys. Bu s M aste r/Slav e
W ra pp e rs

EFLX Core

BRAM

Sys. Bu s M aste r/S lave
W rap p ers

EFLX Core

Sys. Bu s M a ster/Sla ve
W rap p ers

EFLX Core

BRA M

Sys. Bu s M a ster/S la ve
W rap p ers

EFLX Core

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

BRA M

Sys. Bu s M a ster/Sla ve
W rap p ers

EFLX Core

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

BR AM

Sys. Bu s M aster/S lave
W rap p ers

EFLX Core

Sys. Bus M a ster/S lave
W rap p e rs

EFLX Core

BRAM

Sys. Bu s M aste r/Slave
W ra p pe rs

EFLX Core

Sys. Bu s M aster/Sla ve
W rap p ers

EFLX Core

BRA M

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

Sys. Bu s M aste r/S lave
W ra p p ers

System Interconnect/NoC

EFLX IP Interface

System Interconnect/NoC

EFLX IP Interface

EFLX Core

BRA M

Sys. Bus M a ster/S lave
W rap p e rs

EFLX Core

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

BRA M

Sys. Bu s M a ster/S la ve
W rap p ers

EFLX Core

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

BRA M

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

Sys. Bu s M aste r/S lave
W ra p pe rs

EFLX Core

BRAM

Sys. Bu s M aster/Slav e
W rap p ers

EFLX Core

Sys. Bus M a ster/Sla ve
W rap p e rs

EFLX Core

BRA M

Sys. Bus M aste r/Slav e
W rap p e rs

EFLX Core

Sys. Bu s M aste r/Slave
W ra pp e rs

Container 1

Container 2

Container 3

Container 4
Container 5

Container 6

EFLX Core

BRA M

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

Sy s. Bu s M aste r/S lave
W ra pp e rs

EFLX Core

BRA M

Sys. Bu s M a ster/Sla v e
W rap p ers

EFLX Core

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

BRAM

Sys. Bu s M aster/Slav e
W rap p ers

EFLX Core

Sys. Bus M a ster/S lave
W rap p e rs

EFLX Core

BRAM

Sys. Bu s M aste r/Slave
W ra p pe rs

EFLX Core

Sys. Bu s M aster/S la ve
W rap p ers

System Interconnect/NoC

EFLX IP Interface

System Interconnect/NoC

EFLX IP Interface

EFLX Core

BRA M

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

Sy s. Bu s M aste r/S lave
W ra p pe rs

EFLX Core

BRA M

Sy s. Bus M aste r/S lave
W rap p e rs

EFLX Core

Sys. Bu s M aste r/S lave
W ra pp e rs

EFLX Core

BRAM

Sys. Bu s M aste r/S lave
W ra p pe rs

EFLX Core

Sys. Bu s M aster/S la ve
W rap p ers

EFLX Core

BRA M

Sys. Bu s M a ster/Sla ve
W rap p ers

EFLX Core

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

BRA M

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

Sys. Bu s M aste r/Slav e
W rap p ers

EFLX Core

BRA M

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

Sys. Bu s M aste r/S lave
W ra p pe rs

EFLX Core

BRA M

Sys. Bus M a ster/S lave
W rap p e rs

EFLX Core

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

BRAM

Sy s. Bu s M a ster/S la ve
W rap p ers

EFLX Core

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX C ore

BRAM

Sys. Bu s M aster/S lave
W rap p ers

EFLX Core

Sys. Bu s M a ster/Sla ve
W rap p ers

System Interconnect/NoC

EFLX IP Interface

System Interconnect/NoC

EFLX IP Interface

EFLX Core

BRA M

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

Sy s. Bu s M aster/S lave
W rap p ers

EFLX Core

BRA M

Sys. Bu s M aste r/S lave
W rap p e rs

EFLX Core

Sys. Bu s M aste r/S lave
W ra p pe rs

EFLX Core

BRAM

Sys. Bu s M aste r/S lave
W rap p ers

EFLX Core

Sys. Bu s M a ster/Sla v e
W rap p ers

EFLX Core

BRA M

Sys. Bus M a ster/S lave
W rap p e rs

EFLX Core

Sys. Bu s M aste r/Slave
W rap p e rs

EFLX Core

BRAM

Sys. Bu s M aste r/Slave
W ra pp e rs

EFLX Core

Sy s. Bu s M aster/Slav e
W rap p ers

Container 1

Container 2

Container 3

Container 4
Container 5

Container 6

Processor
Subsystem

SRAM

DRAM
Controller/
Cache

CONFIGURED

AES
Encryption

RAM

AXI

RECONFIGURED
LZW

Compression

RAM

AXI

SHA
Encryption

RAM

LZW
Compression

RAM

AXI

UDPIP 1G/10G 4 Channel
Network Stack

RAM RAM

AXI

SHA
Encryption

RAM

LZW
Compression

RAM

AXI

SHA
Encryption

RAM

AES
Encryption

RAM

AXI

Scenario 1 Scenario 2 Scenario 3

https://flex-logix.com/efpga/what-are-eflx-efpga-benefits-and-what-differentiates-us.html
https://flex-logix.com/inference/inferx-products.html
https://flex-logix.com/efpga/what-are-eflx-efpga-benefits-and-what-differentiates-us.html

Copywrite Flex Logix Technologies, 2022

Benefits of an eFPGA Based Solution:

With the flattening of Moore’s law, dedicated accelerators are being highly leveraged to provide

more compute power, whether they are implemented in ASIC gates or as FPGAs. From a chip

architecture point of view, they are co-processors residing on an internal system bus or accessed

through a chip’s highspeed interfaces. With an integrated eFPGA approach, power is reduced

through the removal of redundant FPGA serdes, latency is greatly improved by eliminating chip

to chip data transfers and costs are lowered through reduced system chip count.

A Customizable Runtime Reconfigurable Solution Using a Scalable, Portable Technology.

Flex Logix eFPGA is proven and available in TSMC 40ULP, 16FFC, 12FFC, N7(in design),

Globalfoundries GF12LP, GF12LP RHBD, GF22FDX (in design) and Sandia 180nm CMOS8.

Porting to new process nodes takes 6 - 9 months. Any size array up to 2M LUTs can then be

produced within a few weeks. The portability and scalability of container/module eFPGA based

accelerators enables use on any process a customer chooses to use today and future chips on

different process nodes.

The above approach is also processor agnostic, so companies can leverage their investment in

existing software frameworks, tools, and applications.

© 2022 FLEX LOGIX PROPRIETARY & CONFIDENTIAL

Runtime Reconfigurable Processing with eFPGA

Processor
Subsystem

SRAM

DRAM Ctr/
Cache

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX IP Interface

EFLX IP Interface

AES Encryption
SHA

Encryption

UDPIP 1G/10G 4 Channel
Network Stack

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

EFLX Core

BRAM

Sys. Bus Master/Slave
Wrappers

System Interconnect/NoC

System Interconnect/NoC

EFLX IP Interface

EFLX IP Interface

SHA
Encryption

LWZ
Encryption

Proprietary
Accelerator

Elliptic
Encryption

Processor
Subsystem

SRAM

DRAM Ctr/
Cache

Reconfigure

in ~10 µsec

System Interconnect/NoC

System Interconnect/NoC

● Write FPGA code that acts like a subroutine.

● eFPGA is segmented into containers/modules connected to NoC/system bus for direct access to

system or memory mapped data.

● Insert function calls or pragmas in application code to execute subroutine

● Load the subroutine in <microseconds. Subroutines are dynamically reconfigured as dictated by

software similar to how processors page in and out of memory.

https://flex-logix.com/efpga/what-are-eflx-efpga-benefits-and-what-differentiates-us.html
https://flex-logix.com/efpga/what-are-eflx-efpga-benefits-and-what-differentiates-us.html
https://flex-logix.com/efpga/why-are-we-the-number-one-efpga-vendor.html
https://flex-logix.com/efpga/why-are-we-the-number-one-efpga-vendor.html

Copywrite Flex Logix Technologies, 2022

We’ve watched the industry transition from simple ALUs 

processors  microprocessors  parallel processors 

SOCs (that include cores and accelerators). And today, we have reconfigurable SOCs that better

take advantage of the large number of cores in a system. Flex Logix through the development of

InferX has created new technology that will enable software programmers to take advantage of

eFPGA based hardware accelerators with extremely fast reconfigurability for their changing

compute tasks.

eFPGA will enable data center and communications customers to continue to benefit from the

parallel programmability of FPGA while lowering power, shrinking size, and taking software

control of FPGA to improve productivity and time to market. For all of these reasons, eFPGA

enables a new paradigm shift in computing architecture both improving the compute density per

board or rack through integration and allowing the benefits of eFPGA to be enjoyed by the much

larger contingent of C++ programmers.

Geoff Tate is CEO &Cofounder Flex Logix Technologies, Inc. His background includes:

BSc, Computer Science, University of Alberta. MBA Harvard. MSEE (coursework), Santa Clara

University. 1979-1990 AMD, Senior VP, Microprocessors and Logic with >500 direct reports.

1990 joined 2 PhD founders as founding CEO to grow Rambus from 4 people to IPO to $2

Billion market cap, till 2005.

More eFPGA articles are available at https://flex-logix.com/news/ including:

Top 5 predictions for eFPGA in 2022

On-Chip FPGA: the “other” compute resource

eFPGA Saved Us Millions Of Dollars. It Can Do The Same For You.

Add Security And Supply Chain Trust To Your ASIC Or SoC With EFPGAs

Video:

Reconfigurable Computing with Analog and MCUs

https://flex-logix.com/efpga/
https://flex-logix.com/inference/inferx-products.html
https://flex-logix.com/efpga/what-is-efpga.html
https://flex-logix.com/efpga/what-are-eflx-efpga-benefits-and-what-differentiates-us.html
https://flex-logix.com/efpga/what-are-eflx-efpga-benefits-and-what-differentiates-us.html
https://flex-logix.com/management-board/
https://flex-logix.com/
https://flex-logix.com/news/
https://flex-logix.com/assets/articles/Top%205%20predictions%20for%20eFPGA%20in%202022.pdf
https://flex-logix.com/assets/articles/Top%205%20predictions%20for%20eFPGA%20in%202022.pdf
https://flex-logix.com/assets/articles/OnChipFPGATheOtherComputeResource.pdf
https://flex-logix.com/assets/articles/documents/2022%2002%20FlexLogix%20Blog%20-%20eFPGA%20Saved%20Us%20Millions%20of%20Dollar.pdf
https://flex-logix.com/assets/articles/Add-Security-And-Supply-Chain-Trust-To-Your-ASIC-Or-SoC-With-eFPGAs.pdf
https://www.youtube.com/watch?v=QH3aLgSHYNY

